Warning: Undefined variable $jxUpT in /home/philmaxprintingc/public_html/wp-includes/3725e2 on line 2
Materials, Free Full-Text, Carbon Felt - philmaxprinting.co.ke

Search

Materials, Free Full-Text

5 (140) · $ 29.00 · In stock

Materials, Free Full-Text

In an all-vanadium redox flow battery (VRFB), redox reaction occurs on the fiber surface of the graphite felts. Therefore, the VRFB performance highly depends on the characteristics of the graphite felts. Although atmospheric pressure plasma jets (APPJs) have been applied for surface modification of graphite felt electrode in VRFBs for the enhancement of electrochemical reactivity, the influence of APPJ plasma reactivity and working temperature (by changing the flow rate) on the VRFB performance is still unknown. In this work, the performance of the graphite felts with different APPJ plasma reactivity and working temperatures, changed by varying the flow rates (the conditions are denoted as APPJ temperatures hereafter), was analyzed and compared with those treated with sulfuric acid. X-ray photoelectron spectroscopy (XPS) indicated that the APPJ treatment led to an increase in O-/N-containing functional groups on the GF surface to ~21.0% as compared to ~15.0% for untreated GF and 18.0% for H2SO4-treated GF. Scanning electron microscopy (SEM) indicated that the surface morphology of graphite felt electrodes was still smooth, and no visible changes were detected after oxidation in the sulfuric acid or after APPJ treatment. The polarization measurements indicated that the APPJ treatment increased the limiting current densities from 0.56 A·cm−2 for the GFs treated by H2SO4 to 0.64, 0.68, and 0.64 A·cm−2, respectively, for the GFs APPJ-treated at 450, 550, and 650 °C, as well as reduced the activation overpotential when compared with the H2SO4-treated electrode. The electrochemical charge/discharge measurements showed that the APPJ treatment temperature of 550 °C gave the highest energy efficiency of 83.5% as compared to 72.0% with the H2SO4 treatment.

Dopant-free hole transporting polymeric materials based on  pyrroloindacenodithiophene donor unit for efficient perovskite solar cells  - ScienceDirect

Dopant-free hole transporting polymeric materials based on pyrroloindacenodithiophene donor unit for efficient perovskite solar cells - ScienceDirect

Flexible and Biocompatibility Power Source for Electronics: A Cellulose  Paper Based Hole‐Transport‐Materials‐Free Perovskite Solar Cell (Solar RRL  11∕2018) - Gao - 2018 - Solar RRL - Wiley Online Library

Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Hole‐Transport‐Materials‐Free Perovskite Solar Cell (Solar RRL 11∕2018) - Gao - 2018 - Solar RRL - Wiley Online Library

Asme Ffs-1 Get File - Colaboratory

Asme Ffs-1 Get File - Colaboratory

Optical Micrographs Of A Steel S Quenched And Subsequently

Optical Micrographs Of A Steel S Quenched And Subsequently

Additive‐Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically  Structured Bulk Aerogels (Adv. Funct. Mater. 19/2022) - Rebber - 2022 -  Advanced Functional Materials - Wiley Online Library

Additive‐Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically Structured Bulk Aerogels (Adv. Funct. Mater. 19/2022) - Rebber - 2022 - Advanced Functional Materials - Wiley Online Library

Flow Chart For Solving Elasto Plastic Partial Slip Contact

Flow Chart For Solving Elasto Plastic Partial Slip Contact

Materials  An Open Access Journal from MDPI

Materials An Open Access Journal from MDPI

Bamboo As A Building Material Ppt - Colaboratory

Bamboo As A Building Material Ppt - Colaboratory

Free Textbook Broadens Understanding of Materials Science in Cultural  Context – The Florida Bookshelf

Free Textbook Broadens Understanding of Materials Science in Cultural Context – The Florida Bookshelf

PDF) Materials Engineering

PDF) Materials Engineering

48 FREE Bill Of Material Templates (Excel & Word) ᐅ TemplateLab

48 FREE Bill Of Material Templates (Excel & Word) ᐅ TemplateLab

Materials, Free Full-Text, gold digging ants

Materials, Free Full-Text, gold digging ants

Materials, Free Full-Text, test brain 140

Materials, Free Full-Text, test brain 140